Como colocar a mão no nitrogênio líquido e não sofrer queimaduras - Efeito Leidenfrost

Calma, não estou querendo matar ninguém e nem recomendando que façam o experimento caso tenham acesso a qualquer quantidade de nitrogênio líquido.

Até porque, nitrogênio líquido é uma substância que se encontra a uma temperatura de -196ºC e qualquer manuseio incorreto pode levar ao congelamento instantâneo da parte do corpo em contato com ele.

Acho que ninguém aqui quer uma coisa como essa acontecendo consigo, não é?

Vamos assistir primeiro a um vídeo no qual um maluco mete a mão no nitrogênio líquido e sai intacto da experiência.

Vamos a uma curta explicação?

Tudo pode ser devidamente explicado com base no efeito Leidenfrost.

Ele ocorre quando um líquido encontra uma superfície muito mais quente do que ele.

Se você jogar gotas de água a temperatura ambiente em uma frigideira extremamente aquecida, o que vai ocorrer é que as gotas vão "correr" pela frigideira (sartén, para os amigos hispano hablantes) por algum tempo antes de sofrer vaporização completa.

Isso porque as gotas normalmente assumem uma configuração esférica (possui a meljor relação área superficial/volume) e a parte da gota que toca na superfície quente forma uma espécie de concavidade.

Essa concavidade fica preenchida com uma camada de ar/vapor d'água que atua como isolante térmico, retardando dessa forma a evaporação imediata da gota.

O que o maluco do vídeo faz é justamente isso, ele mergulha a mão ligeiramente úmida dentro de um frasco de Dewar contendo nitrogênio líquido.

A mão é a superfície extremamente quente (ela deve estar em torno de 37ºC, o que é muito mais quente que os -196ºC do nitrogênio).

A umidade na mão e o efeito Leidenfrost garantem que a mão permaneça intacta por algum tempo.

Claro que o maluco do vídeo deixa a mão por pouco tempo mergulhada, pois não dá para dar chance ao azar.

E aí, gostaram da explicação?

Então logo volto com mais vídeos incríveis mostrando as maravilhas da ciência.

Nanotecnologia a favor da limpeza

Antes de eu sair por aí falando qualquer coisa, assista ao vídeo abaixo:

A cobertura Ultra-Ever Dry é uma cobertura superhidrofóbica (avessa à água) e oleofóbica (avessa à gorduras e óleos) que repelirá praticamente qualquer líquido.

Usa uma nanotecnologia prioprietária (não espere que eles revelem o segredo tão cedo) para cobrir qualquer objeto e criar uma barreira na sua superfície.

Essa barreira repela água, óleo e outros líquidos como nenhuma outra proteção que você já tenha visto antes.

De acordo com o MeioBit (que publicou antes de mim porque eles não sofrem de preguiça crônica), pela bagatela de US$ 150,00 você compra os dois ingredientes que, ao serem misturados, permitem produzir material suficiente para cobrir 4 m² de área.

E por "área", entenda que graças à adesão e resistência à abrasão dessa bruxaria que é o Ultra Ever Dry, é possível cobrir todos os tipos de superfície (ou pelo menos é o que eles querem que a gente acredite).

Mais informações, no site do fabricante.

Experimento da bolha de sabão gigante

O usuário do youtube brusspup tem um canal muito interessante, no qual exibe vídeos de experimentos variados.

Vão desde ilusões de ótica (recomendo que assistam, são muito bons) até experimentos científicos divertidos.

O experimento que apresento abaixo é muito bonito e simples de realizar (se você tiver acesso a algumas pedras de gelo seco - gás carbônico no estado sólido, para os íntimos).

Em uma tigela, ele coloca o gelo seco e água. Isso faz com que o dióxido de carbono (ou gás carbônico) mude para o estado gasoso velozmente.

Em outro pote, ele faz uma mistura de água, detergente líquido e glicerina .

Com um pedaço de tecido molhado na solução de sabão, uma película é formada na vasilha em que o gás carbônico está sendo exalado.

Lentamente, a pressão gasosa no interior da película de sabão vai aumentando e uma bolha de sabão se forma.

Graças ao fenômeno da tensão superficial (potencializado pela glicerina presente na solução saponácea), a bolha de sabão é mais resistente que o normal e a bolha consegue crescer bastante antes que ocorra o rompimento.

O resultado? Diversão sem fim para crianças de todas as idades (dos 0 aos 90 anos, para ser mais exato).

Nós somos feitos de poeira de estrelas

É isso mesmo que você leu, nossos átomos vieram das estrelas.

O autor dessa frase clássica é o grande escritor Carl Sagan, um dos caras que mais me fez admirar a ciência quando eu era criança.

No início do Universo, com o tal do Big Bang (a grande explosão), surgiram  os primeiros átomos de hidrogênio.

Com o advento do tempo (sim, ele também passou a existir graças ao Big Bang), as reações de fusão nuclear produziram os átomos de hélio e, posteriormente, os núcleos dos sóis.

Daí para a frente, incontáveis bilhões de anos se passaram até que o "combustível" das estrelas entrasse em processo de escassez (pode até demorar, mas o hélio dos núcleos solares um dia acaba) e acontecesse a "extinção" desse material.

Outros incontáveis bilhões de anos se passaram até que novas e sucessivas reações de fusão nuclear produzissem o átomo mais pesado que é possível produzir através de fusão e com balanço energético favorável, o Ferro.

A partir do átomo de ferro, a produção de novos elementos químicos ocorre por fissão nuclear, pois a quantidade de núcleons (prótons e nêutrons) é muito grande e os núcleos atômicos tendem a se tornar instáveis.

Deem uma olhada nessa tabela de nuclídeos para ver todos os possíveis elementos químicos (e seus respectivos isótopos) que podem surgir através de processos nucleares (decaimentos alfa, beta+, beta-, etc). http://www.nndc.bnl.gov/chart/

Bom, o fato é que depois que os núcleos estelares entram em decadência, dependendo do raio da estrela, eles esfriam e acabam se tornando imensas fontes de minerais.

É daí que surgiram os diversos elementos químicos encontrados em nosso planeta e em corpos celestes similares.

Como eles se espalharam? Bom, isso é assunto para outro post informal como esse.

Para entender com mais facilidade o que falei acima, assisam ao vídeo do Neil de Grasse Tyson, um dos maiores divulgadores da ciência da atualidade.

Para quem não o conhece, digamos que ele ficou famoso por ter se tornado o personagem central de um meme graças a uma pose feita durante uma entrevista.

Então, da próxima vez que disserem que você não é nada, pare e pense o seguinte:

Você é filho das estrelas e é mais uma parte do Universo.

Se você está aqui, é porque as reações nucleares prepararam o caminho para que tudo que o rodeia e até mesmo o seu corpo pudesse tomar forma.

Independente de crenças pessoais, essa é a mais bela verdade que o Cosmo colocou à disposição de todos nós:

Do pó estelar viemos e para o pó estelar retornaremos!

Obrigado a todos por acompanharem sempre este blog.

Um excelente novo ano e que em 2013 possamos continuar a falar sobre esses e outros surpreendetes fatos científicos.

P.S.: A ideia para esse post veio do HypeScience.

O Super Supercapacitor

Você não leu o título errado, é isso mesmo, a palavra SUPER está grafada duas vezes!

O vídeo a seguir trata de uma inovação surpreendente no campo da nanotecnologia.

Cientistas da UCLA espalharam óxido de grafite sobre um filme plástico, colocaram no leitor de DVD de um aparelho de som igualmente caseiro e, em menos de um minuto eles obtiveram grafeno.

Grafeno, para quem não sabe, é uma "folha" formada apenas por átomos de carbono e é a matéria-prima dos nanotucos de carbono. (Vejam as imagens abaixo.)

Esse aqui é o grafeno:

Filho do grafite (obtido do mineral grafita).

Nada mais de fornos, de arcos-oltaicos, de plasma e firulas mil para produzir grafeno, certo? Só o tempo dirá, mas o mais legal ainda não chegou.

Eles pegaram esse grafeno produzido de forma tão simples e conectaram um LED ao  filme de grafeno.

O LED não só acendeu como permaneceu aceso por 5 minutos. O grafeno produzido acumulou carga elétrica e agiu como uma fonte de enegia limpa e barata. Eles produziram um super-supercapacitor. :)

Se no futuro teremos baterias ecologicamente corretas baseadas nessa tecnologia, não posso dizer, mas que é uma descoberta impressionante, isso é!

Aqui o perfil do doutorando Mahel El-Kady, da Universidade do Cairo.

Semana que vem, escreverei um post tentando explicar como funciona esse supercapacitor.

Ah, aqui tem um outro post meu sobre nanotecnologia.

DIca do Sendentário.

O que acontece quando um ovo é quebrado debaixo d'água?


Se você quiser saber mais, eu tento interpretar o fenômeno na sequência do post...

<Tentativa de explicação do Dr. Chattoff>

Água por todos os lados significa pressão exercida igualmente por todos os lados também (o termo científico mais adequado seria "isotropicamente).

Sendo assim, ao se quebrar um ovo sob a água, o conteúdo altamente viscoso do ovo não se mistura imediatamente com a água e mantém por algum tempo sua estrutura ovoide.

A clara do ovo contém 90% de água (aproximadamente) e albumina (dentre outras coisas) e é muito viscosa, ou seja,vai impedir a imediata mistura da clara com a água (pelo processo de osmose isso vai acabar acontecendo).

Já a gema, é composta por gorduras (lipídeos) e essa sim não vai dissolver-se na água. Mas como ela está protegida da água ao redor do ovo graças à clara, dificilmente a gema terá sua película rompida.

Como eu já disse no início da explicação, graças à isotropia da pressão sob a água, não haverá uma tendência imediata de rompimento da película de clara porque a pressão é igual em qualquer direção do espaço.

Por ser viscosa, a clara não se dissolverá imediatamente na água. 
Por possuir um conteúdo altamente hidrofóbico, a gema não se romperá e nem se dissolverá na água.

Tudo isso junto gera esse belo efeito que você pode assistir no vídeo.

Gostaram? Então saibam que aceito pedidos de postagem, basta dar um toque aqui pelo e-mail contato@diariodeumquimicodigital.com que eu atendo (quando o tempo permitir, é claro).

Bolhas de sabão eletrizadas

Uma bolha de sabão é soprada sobre uma folha de acetato (a famosa "transparência", usada nos antigos retroprojetores).

Então, um balão que foi carregado eletricamente por atrito é aproximado da bolha.

É bem interessante ver a bolha se deformar na direção do balão.

A segunda parte do experimento é muito mais interessante.

Uma segunda bolha é soprada por dentro da primeira.

O balão eletricamente carregado é novamente aproximado das bolhas.

A bolha externa (maior) deforma-se da mesma maneira. A bolha interna (menor) sequer se move.

Qual a razão disso?

Ora, a superfície da bolha é uma excelente aproximação de uma casca esférica com cargas elétricas simetricamente distribuídas. 

Graças à Física (Lei de Gauss), sabemos que essa distribuição esfericamente simétrica de cargas gera um campo elétrico nulo no interior da casca.

E é o que podemos comprovar ao observar que a bolha interna não sofre nenhuma atração pelas cargas elétricas do balão atritado.

Eu nunca tinha pensado nisso, mas é um excelente experimento para explicar a gaiola de Faraday, a não ser que eu esteja muito enganado.

O poder de uma expansão irreversível

O Professor resolveu demonstrar conceitos como calor e trabalho de uma forma bem prática.

O que ele fez?

Pegou um frasco de nitrogênio líquido, colocou em uma garrafa PET e fechou bem a tampa. (maluco, só pode ser)

Largou a garrafa em uma cesta de lixo e tocou 1500 bolinhas de ping-pong (não, eu não escrevo pingue-pongue, isso é coisa de hipster)

O nitrogênio líquido não aguenta muito tempo como líquido na temperatura ambiente. Ele absorve calor da vizinhança e se transforma rapidamente em gás.

Todo gás ocupa muito espaço, geralmente a variação de volume do estado líquido para o gasoso é muito grande.

Agora, imagine esse gás tentando se expandir dentro de uma inocente garrafa plástica!

Imaginou? Pois é, ela não vai ter espaço.

Como se trata de uma garrafa plástica, ela vai se deformar sob ação do gás em expansão.

Até que a coitada explode e permite ao gás se expandir livremente.

A grande sacada do professor do vídeo foi colocar as1500 bolinhas de ping-pong no caminho do gás em expansão.

Resultado? Um show que os alunos dele jamais vão esquecer!