Primeira postagem de 2014 - fluidos não-newtonianos em câmera lenta

Olá pessoal, tudo bem?

Para começar o ano de 2014, resolvi reproduzir a matéria sobre fluidos não-newtonianos que eu vi no Sploid.

Para começar, assista ao vídeo abaixo:

A coisa estranha aí no vídeo é uma mistura de água e amido de milho (a famosa maisena aqui no Brasil).

Se você tocar gentilmente na mistura, ela se comporta como líquido. Até se você conseguir colocar um pouquinho dela na palma da mão, vai ver que ela escorre como um líquido convencional.

Agora, tente apertar ou golpear fortemente a mistura. Ela vai se comportar como um sólido e vai oferecer resistência aos golpes aplicados.

Essa categoria de materiais atendem pelo nome de fluidos não-newtonianos. Alguns bons exemplos desses fluidos são: sangue, ketchup, iogurte, recheios de bolo (cremosos), lama e alguns materiais poliméricos fundidos.

Vou resumir um pouco o que caracteriza um fluido como não-newtoniano, mas você pode ler o material original aqui e aqui.

Imagine um maço de cartas de baralho. Agora imagine que você está espalhando o maço de cartas sobre a mesa fazendo uma deslizar sobre a outra.

Pois é, os líquidos newtonianos são compostos por várias "camadas" de moléculas que fazem o papel das cartas do baralho.

Obrigar as camadas a se mover por meio da aplicação de uma força sobre elas vai produzir escoamento do líquido.

Se você quiser fazer o líquido fluir duas vezes mais rápido, basta aplicar o dobro da força.

Com os fluidos não-newtonianos essa realidade não se aplica. Alguns deles vão exigir menos que o dobro da força, outros vão exigir mais que o dobro da força, e esse tanto de energia vai depender do material em questão.

O que impede ou facilita o movimento das camadas de líquido é a fricção entre as mesmas. Essa fricção dá origem ao que costumamos chamar de viscosidade (resistência ao movimento de fluxo das camadas).

Bom, o papo já ficou muito técnico e não quero chateá-los logo na primeira postagem de 2014.

Em breve, pretendo voltar à plataforma a que estou acostumado a blogar e, com isso, pretendo voltar à frequência original de posts.

Um grande novo ano para todos os amigos do Brasil, de Portugal e, pelo que tenho visto nas estatísticas, de Mozambique! :)

Tutorial do Tracker para experimentos de Física (MRU/MRUV)

Já faz um tempinho que tenho esse tutorial pronto, tanto que a versão do Tracker disponível no site é mais atual que a que eu usei no meu documento. 

 Tá, isso não importa muito, a interface mudou quase nada da versão 4.72 para a 4.80. 

Meu tutorial ainda tá valendo! 


Quem tem interesse em usar câmeras digitais para incrementar as aulas de Física, aí está um bom ponto de partida. Basta baixar dois programinhas (Xuggle e Tracker) e tomar o cuidado de instalar o Xuggle antes do Tracker e sair usando. 

 Se você ainda não tem a Máquina Virtual Java atualizada, faça-o antes de sair instalando esses dois programas. ;) 

 Boa diversão a quem se aventurar com o Tracker! ;) 

Experimento MacGyver do dia - vela de manteiga

É isso aí, manteiga, aquela mesma de passar no pão.

Criatividade é algo, né?

Na falta de uma vela de sebo ou de parafina e usando apenas um tablete de manteiga, um palito de churrasco e um guardanapo de limpar a boca, dá para construir uma vela que pode durar até 4 horas.

Explicando o procedimento experimental:

  • Corte o tablete de manteiga;
  • com a ajuda do palito de churrasco, faça um furo até o fundo do tablete de manteiga;
  • corte um pedaço de guardanapo de papel e enrole-o como se fosse um pavio;
  • dobre em dois o "pavio" de papel formando um "V";
  • o "V" formado deve ser desigual, pois ele será enfiado no buraco do tablete de manteiga e uma parte deve ficar para fora da manteiga;
  • enfie o pavio na manteiga com o auxílio do palito;
  • esfregue na manteiga a parte do pavio que ficou para fora;
  • acenda o pavio com um palito de fósforo ou isqueiro;
  • coloque a vela em um frasco de vidro para que a chama seja estável.

Boa diversão na próxima queda no fornecimento de energia elétrica! 

Como produzir gelo seco em casa

Ingredientes:

  • 1 fronha ou um saco de pano
  • 1 extintor de incêndio de gás carbônico (para incêndios classe B e C)

Modo de fazer:

Simplesmente coloque a mangueira do extintor dentro da fronha ou saco e acione o extintor.

Ou assista ao vídeo abaixo para entender melhor o processo:

A passagem do gás carbônico do estado gasoso para o sólido neste experimento pode ser explicado com base no efeito Joule-Thomson.

Como o gás está sendo expelido de dentro do cilindro do extintor de incêndio a uma velocidade muito alta e com uma grande variação de pressão, considera-se que ele está realizando uma expansão livre  (irreversível, sem troca de calor e sem produção de trabalho).

Nesse caso, a energia interna (ou total) permanece constante.

Quando o gás expande-se, a distância média entre as moléculas aumenta e, consequentemente, as forças de atração passam a superar as forças de repulsão (as de repulsão têm um alcance bem menor que as de atração).

Com a expansão, ocorre um aumento na energia potencial. Só que a energia interna nesse caso permanece constante e, para que a energia potencial aumente, é necessário que a energia cinética diminua a fim de manter a energia total (ou interna) inalterada.

A temperatura está intimamente ligada à energia cinética média do sistema, e como ela diminui para respeitar a conservação de energia, significa que a temperatura média do sistema também diminui.

 

Vi o vídeo aqui ó!

 

NOTA: Recomenda-se adquirir um extintor que se destine apenas a essa finalidade.

O uso de extintores de uso comum (da escola, do condomínio, da universidade, do clube, etc) pode acarretar em falhas de segurança gravíssima. Se você usar um extintor de um dos locais anteriormente citados e não realizar a recarga do mesmo, você pode estar deixando a área que ele deveria proteger vulnerável m em casos de incêndios reais. 

Como colocar a mão no nitrogênio líquido e não sofrer queimaduras - Efeito Leidenfrost

Calma, não estou querendo matar ninguém e nem recomendando que façam o experimento caso tenham acesso a qualquer quantidade de nitrogênio líquido.

Até porque, nitrogênio líquido é uma substância que se encontra a uma temperatura de -196ºC e qualquer manuseio incorreto pode levar ao congelamento instantâneo da parte do corpo em contato com ele.

Acho que ninguém aqui quer uma coisa como essa acontecendo consigo, não é?

Vamos assistir primeiro a um vídeo no qual um maluco mete a mão no nitrogênio líquido e sai intacto da experiência.

Vamos a uma curta explicação?

Tudo pode ser devidamente explicado com base no efeito Leidenfrost.

Ele ocorre quando um líquido encontra uma superfície muito mais quente do que ele.

Se você jogar gotas de água a temperatura ambiente em uma frigideira extremamente aquecida, o que vai ocorrer é que as gotas vão "correr" pela frigideira (sartén, para os amigos hispano hablantes) por algum tempo antes de sofrer vaporização completa.

Isso porque as gotas normalmente assumem uma configuração esférica (possui a meljor relação área superficial/volume) e a parte da gota que toca na superfície quente forma uma espécie de concavidade.

Essa concavidade fica preenchida com uma camada de ar/vapor d'água que atua como isolante térmico, retardando dessa forma a evaporação imediata da gota.

O que o maluco do vídeo faz é justamente isso, ele mergulha a mão ligeiramente úmida dentro de um frasco de Dewar contendo nitrogênio líquido.

A mão é a superfície extremamente quente (ela deve estar em torno de 37ºC, o que é muito mais quente que os -196ºC do nitrogênio).

A umidade na mão e o efeito Leidenfrost garantem que a mão permaneça intacta por algum tempo.

Claro que o maluco do vídeo deixa a mão por pouco tempo mergulhada, pois não dá para dar chance ao azar.

E aí, gostaram da explicação?

Então logo volto com mais vídeos incríveis mostrando as maravilhas da ciência.

Nanotecnologia a favor da limpeza

Antes de eu sair por aí falando qualquer coisa, assista ao vídeo abaixo:

A cobertura Ultra-Ever Dry é uma cobertura superhidrofóbica (avessa à água) e oleofóbica (avessa à gorduras e óleos) que repelirá praticamente qualquer líquido.

Usa uma nanotecnologia prioprietária (não espere que eles revelem o segredo tão cedo) para cobrir qualquer objeto e criar uma barreira na sua superfície.

Essa barreira repela água, óleo e outros líquidos como nenhuma outra proteção que você já tenha visto antes.

De acordo com o MeioBit (que publicou antes de mim porque eles não sofrem de preguiça crônica), pela bagatela de US$ 150,00 você compra os dois ingredientes que, ao serem misturados, permitem produzir material suficiente para cobrir 4 m² de área.

E por "área", entenda que graças à adesão e resistência à abrasão dessa bruxaria que é o Ultra Ever Dry, é possível cobrir todos os tipos de superfície (ou pelo menos é o que eles querem que a gente acredite).

Mais informações, no site do fabricante.

Experimento da bolha de sabão gigante

O usuário do youtube brusspup tem um canal muito interessante, no qual exibe vídeos de experimentos variados.

Vão desde ilusões de ótica (recomendo que assistam, são muito bons) até experimentos científicos divertidos.

O experimento que apresento abaixo é muito bonito e simples de realizar (se você tiver acesso a algumas pedras de gelo seco - gás carbônico no estado sólido, para os íntimos).

Em uma tigela, ele coloca o gelo seco e água. Isso faz com que o dióxido de carbono (ou gás carbônico) mude para o estado gasoso velozmente.

Em outro pote, ele faz uma mistura de água, detergente líquido e glicerina .

Com um pedaço de tecido molhado na solução de sabão, uma película é formada na vasilha em que o gás carbônico está sendo exalado.

Lentamente, a pressão gasosa no interior da película de sabão vai aumentando e uma bolha de sabão se forma.

Graças ao fenômeno da tensão superficial (potencializado pela glicerina presente na solução saponácea), a bolha de sabão é mais resistente que o normal e a bolha consegue crescer bastante antes que ocorra o rompimento.

O resultado? Diversão sem fim para crianças de todas as idades (dos 0 aos 90 anos, para ser mais exato).