Primeira "imagem" do orbital de um átomo de hidrogênio é obtida

ku-xlarge

A imagem acima é o resultado de uma observação direta de um orbital atômico de um elétron - uma função de onda atômica real! Para capturar a imagem, pesquisadores utilizaram um novo microscópio quântico - um novo dispotivo que literalmente permite aos cientistas penetrar no reino quântico.

A estrutura de um orbital é o espaço em um átomo que está ocupado por um elétron. Mas quando tentam descrever as propriedades super-microscópicas da matéria, os cientistas têm se baseado nas funções de onda - uma forma matemática de descrever estados difusos (fuzzy) de partículas, em particular aqueles que apresentam coordenadas espaciais e temporais.

Tipicamente, físicos quânticos usam equações como a de Schrödinger para descrever esses estados, normalmente fazendo surgir números complexos e gráficos mais complexos ainda.

Até esse ponto, os cientistas nunca tinham conseguido observar realmente a função de onda. Tentando capturar um vislumbre da exata posição de um átomo ou o momentum de seu único elétron tem sido como tentar capturar um enxame de mosquitos com uma mão; observações diretas têm a desvantagem de perturbar a coerência quântica. O que tem sido requerido para capturar um estado quântico completo é uma ferramenta que pode estatisticamente realizar a média sobre muitas medidas feitas ao longo do tempo.

Mas como magnificar os estados microscópicos de uma partícula quântica? A resposta, de acordo com um grupo de pesquisadores internacionais, é o microscópio quântico - um dispositivo que usa a microscopia de fotoionização para visualizar estruturas atômicas diretamente.

A pesquisadora Aneta Sotolna (Institute for Atomic and Molecular Physics - Holanda) escreveu para o Physical Review Lettersdescrevendo como ela e seu grupo mapearam a estrutura nodal de um orbital atômico de um átomo de hidrogênio colocado em um campo elétrico estático (corrente contínua).

Após bombardear o átomo com pulsos rápidos e alternados de laser, os elétrons ionizados escaparam e seguiram uma trajetória particular para um detector 2D. Existem muitas trajetória que podem ser tomadas pelos elétrons para atingir o mesmo ponto no detector, assim fornecendo aos pesquisadores com um conjunto de padrões de interferência - padrões que refletem a estrutura nodal da função de onda.

E os pesquisadores conseguiram fazer isso usando uma lente eletrostática que magnifica a onda eletrônica que sai mais de 20.000 vezes.

ku-xlarge 2

Imagem: Exemplos de quatro estados quânticos do átomo de hidrogênio. A coluna central mostra as medidas experimentais, enquanto a coluna à direita mostra a resolução da equação de Schrödinger dependente do tempo - e eles concordam muito bem.

Olhando adiante, os pesquisadores planejam usar a mesma tecnologia para observar como os átomos reagem a um campo magnético.

Você pode ler o estudo completo na Physical Review Letters: "Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States."

Fontes suplementares: Physics WorldAmerican Physical Society.

Imagens: APS/Alan Stonebraker.

FONTE

Curso de Física Teórica (Landau e Lifshitz) no Scribd - Mecânica

E se está no Scribd, é de graça! \o/ Publicarei cada documento separadamente ao longo do mês. 

O documento de hoje trata do assunto "Mecânica Clássica". 

Para quem é fã das equações de movimento newtonianas e lagrangianas, é um prato cheio.

Como colocar a mão no nitrogênio líquido e não sofrer queimaduras - Efeito Leidenfrost

Calma, não estou querendo matar ninguém e nem recomendando que façam o experimento caso tenham acesso a qualquer quantidade de nitrogênio líquido.

Até porque, nitrogênio líquido é uma substância que se encontra a uma temperatura de -196ºC e qualquer manuseio incorreto pode levar ao congelamento instantâneo da parte do corpo em contato com ele.

Acho que ninguém aqui quer uma coisa como essa acontecendo consigo, não é?

Vamos assistir primeiro a um vídeo no qual um maluco mete a mão no nitrogênio líquido e sai intacto da experiência.

Vamos a uma curta explicação?

Tudo pode ser devidamente explicado com base no efeito Leidenfrost.

Ele ocorre quando um líquido encontra uma superfície muito mais quente do que ele.

Se você jogar gotas de água a temperatura ambiente em uma frigideira extremamente aquecida, o que vai ocorrer é que as gotas vão "correr" pela frigideira (sartén, para os amigos hispano hablantes) por algum tempo antes de sofrer vaporização completa.

Isso porque as gotas normalmente assumem uma configuração esférica (possui a meljor relação área superficial/volume) e a parte da gota que toca na superfície quente forma uma espécie de concavidade.

Essa concavidade fica preenchida com uma camada de ar/vapor d'água que atua como isolante térmico, retardando dessa forma a evaporação imediata da gota.

O que o maluco do vídeo faz é justamente isso, ele mergulha a mão ligeiramente úmida dentro de um frasco de Dewar contendo nitrogênio líquido.

A mão é a superfície extremamente quente (ela deve estar em torno de 37ºC, o que é muito mais quente que os -196ºC do nitrogênio).

A umidade na mão e o efeito Leidenfrost garantem que a mão permaneça intacta por algum tempo.

Claro que o maluco do vídeo deixa a mão por pouco tempo mergulhada, pois não dá para dar chance ao azar.

E aí, gostaram da explicação?

Então logo volto com mais vídeos incríveis mostrando as maravilhas da ciência.

Faça seu próprio "disco de Newton" e divirta seus filhos com Ciência

Disco de Newton é o nome de um dispositivo inventado pelo próprio Sir Isaac Newton para estudar as propriedades da luz.

Para quem não sabe, foi ele quem descobriu que a cor branca era a soma de sete cores básicas (onde eu digo "cor", leia "luz").

Pois bem, em mais esse experimento do canal do fqmanuel no Youtube, você pode aprender como fazer seu próprio disco de Newton com um CD antigo (aquele do Roberto Carlos na época que ele não cantava "Esse cara sou eu" tá valendo).

Um pedaço de papel, lápis de cor, cola e uma pecinha de plástico para transformar o CD em um pião também serão necessários.

Veja o vídeo abaixo e conclua que é muito fácil divertir seus filhos com a mais pura e básica Ciência.

Nós somos feitos de poeira de estrelas

É isso mesmo que você leu, nossos átomos vieram das estrelas.

O autor dessa frase clássica é o grande escritor Carl Sagan, um dos caras que mais me fez admirar a ciência quando eu era criança.

No início do Universo, com o tal do Big Bang (a grande explosão), surgiram  os primeiros átomos de hidrogênio.

Com o advento do tempo (sim, ele também passou a existir graças ao Big Bang), as reações de fusão nuclear produziram os átomos de hélio e, posteriormente, os núcleos dos sóis.

Daí para a frente, incontáveis bilhões de anos se passaram até que o "combustível" das estrelas entrasse em processo de escassez (pode até demorar, mas o hélio dos núcleos solares um dia acaba) e acontecesse a "extinção" desse material.

Outros incontáveis bilhões de anos se passaram até que novas e sucessivas reações de fusão nuclear produzissem o átomo mais pesado que é possível produzir através de fusão e com balanço energético favorável, o Ferro.

A partir do átomo de ferro, a produção de novos elementos químicos ocorre por fissão nuclear, pois a quantidade de núcleons (prótons e nêutrons) é muito grande e os núcleos atômicos tendem a se tornar instáveis.

Deem uma olhada nessa tabela de nuclídeos para ver todos os possíveis elementos químicos (e seus respectivos isótopos) que podem surgir através de processos nucleares (decaimentos alfa, beta+, beta-, etc). http://www.nndc.bnl.gov/chart/

Bom, o fato é que depois que os núcleos estelares entram em decadência, dependendo do raio da estrela, eles esfriam e acabam se tornando imensas fontes de minerais.

É daí que surgiram os diversos elementos químicos encontrados em nosso planeta e em corpos celestes similares.

Como eles se espalharam? Bom, isso é assunto para outro post informal como esse.

Para entender com mais facilidade o que falei acima, assisam ao vídeo do Neil de Grasse Tyson, um dos maiores divulgadores da ciência da atualidade.

Para quem não o conhece, digamos que ele ficou famoso por ter se tornado o personagem central de um meme graças a uma pose feita durante uma entrevista.

Então, da próxima vez que disserem que você não é nada, pare e pense o seguinte:

Você é filho das estrelas e é mais uma parte do Universo.

Se você está aqui, é porque as reações nucleares prepararam o caminho para que tudo que o rodeia e até mesmo o seu corpo pudesse tomar forma.

Independente de crenças pessoais, essa é a mais bela verdade que o Cosmo colocou à disposição de todos nós:

Do pó estelar viemos e para o pó estelar retornaremos!

Obrigado a todos por acompanharem sempre este blog.

Um excelente novo ano e que em 2013 possamos continuar a falar sobre esses e outros surpreendetes fatos científicos.

P.S.: A ideia para esse post veio do HypeScience.

O Super Supercapacitor

Você não leu o título errado, é isso mesmo, a palavra SUPER está grafada duas vezes!

O vídeo a seguir trata de uma inovação surpreendente no campo da nanotecnologia.

Cientistas da UCLA espalharam óxido de grafite sobre um filme plástico, colocaram no leitor de DVD de um aparelho de som igualmente caseiro e, em menos de um minuto eles obtiveram grafeno.

Grafeno, para quem não sabe, é uma "folha" formada apenas por átomos de carbono e é a matéria-prima dos nanotucos de carbono. (Vejam as imagens abaixo.)

Esse aqui é o grafeno:

Filho do grafite (obtido do mineral grafita).

Nada mais de fornos, de arcos-oltaicos, de plasma e firulas mil para produzir grafeno, certo? Só o tempo dirá, mas o mais legal ainda não chegou.

Eles pegaram esse grafeno produzido de forma tão simples e conectaram um LED ao  filme de grafeno.

O LED não só acendeu como permaneceu aceso por 5 minutos. O grafeno produzido acumulou carga elétrica e agiu como uma fonte de enegia limpa e barata. Eles produziram um super-supercapacitor. :)

Se no futuro teremos baterias ecologicamente corretas baseadas nessa tecnologia, não posso dizer, mas que é uma descoberta impressionante, isso é!

Aqui o perfil do doutorando Mahel El-Kady, da Universidade do Cairo.

Semana que vem, escreverei um post tentando explicar como funciona esse supercapacitor.

Ah, aqui tem um outro post meu sobre nanotecnologia.

DIca do Sendentário.

"Earth as Art" - e-book da Nasa com fotos incríveis do nosso planeta

A dica de hoje veio pelo site OpenCulture e trata-se de um livro eletrônico com imagens muito belas do nosso planeta.

Disponibilizado pela NASA, o livro eletrônico em formato PDF e também na forma de um aplicativo grátis para o iPad trás imagens artísticas coletadas por satélites da agência espacial estadunidense desde a década de 1960.

Locais como os Himalaias, os desertos do Arizona, o Delta do Rio Lena na Rússia, a Geleira Byrd na Antártida e outros mais estão nesta bela obra.