Calendário de Químico

Acabei de ver no 9GAG e catei o link para vocês.

Trata-se de um calendário bem legal que usa o fenômeno da capilaridade para ir marcando os dias do mês.

Funciona mais ou menos assim:

  1. Cada mês possui um frasco de tinta que, quando aberto, começa a impregnar o papel à sua volta.
  2. Através do fenômeno da capilaridade, a tinta começa a penetrar no papel e a subir por um caminho marcado em relevo no papel.
  3. O designer que criou o calendário colocou os números em uma disposição tal que leva mais ou menos um dia para cada número ficar totalmente pintado.

Além disso, as cores escolhidas pelo criador do calendário refletem a estação do ano e a sensação climática que as pessoas costumam sentir naquele mês em questão.

Mais criações do designer espanhol Oscar Diaz, você encontra no site dele.

http://www.oscar-diaz.net/

Obrigado pela atenção!

Material metálico ultraleve é desenvolvido nos EUA

Um grupo de cientistas norte-americanos desenvolveu um novo material metálico cem vezes mais leve do que esferovite e que pode ser colocado em cima de um dente-de-leão sem o danificar.

Cientistas inventam o material metálico mais leve do Mundo

De acordo com um estudo publicado na revista "Science", o novo material é constituído em 99,99% por ar graças à sua arquitectura celular. Os investigadores da empresa UC Irvine, HRL Laboratories e da Universidade da Califórnia salientam que se trata do mais leve material existente na Terra e que até agora o seu estudo não sofreu qualquer contestação.

"O truque é fabricar uma rede de tubos ocos interligados com uma parede de espessura mil vezes inferior à de um cabelo humano", explicou Tobias Sandler, que lidera a investigação.

O novo material, que recebeu o nome de "microrede metálica ultraleve", é fabricado com 90% de níquel mas, de acordo com os autores, pode ser feito com outra composição já que o níquel foi escolhido apenas pela sua facilidade de manuseamento.

FONTE

 

Molécula que anda como um carro

Vi a notícia no Canal Fala Química do facebook. (Acessem, vale muito a pena.)

A notícia foi publicada na Nature, então é quente, podem acreditar.

O título do artigo é: Electrically driven directional motion of a four-wheeled molecule on a metal surface (Movimento direcional eletricamente acionado de uma molécula de quatro rodas sobre superfície metálica).
O vídeo abaixo dá uma ideia do que acontece com a pequena notável.

A seguir, uma livre tradução do texto encontrado no site da Nature:

Propelir moléculas simples de forma controlada ao longo de uma superfície não-modificada permanece extremamente desafiador porque isso requer moléculas que possam usar energia luminosa, química ou elétrica para modular sua interação com a superfície de forma a gerar movimento. Os motores protéicos da natureza aprenderam a dominar esta arte convertendo mudanças conformacionais em movimento direcional, e têm inspirado o design de sistemas artificiais tais como moléculas de DNA "caminhantes" e motores moleculares à base de reações redox. Mas, apesar de movimentos controlados de moléculas simples ao longo de superfícies ter sido reportado, as moléculas nestes exemplos atuam como elementos passivos que ou se difundem ao longo de uma direção preferencial com igual probabilidade de ir para frente ou para trás ou são arrastadas pela ponteira de um microscópio de tunelamento eletrônico. 

Esse trabalho apresenta uma molécula com quatro unidades funcionais - motores rotatórios funcionais - que sofrem mudanças conformacionais definidas e contínuas sob excitação sequencial eletrônica e vibracional.

Microscopia de tunelamento eletrônico confirma a ativação das mudanças conformacionais dos rotores através de propulsão por tunelamento de elétrons inelásticos, a qual faz com que a molécula seja propelida unidirecionalmente ao longo de uma superfície de Cobre (isótopo-111).

O sistema pode ser adaptado para seguir uma trajetória linear ou aleatória ou para permanecer estacionário, bastando apenas ajustas a quiralidade das unidades individuais do "motor". 

O design da molécula providencia um ponto de partida para a exploração de sistemas mecânicos mais sofisticados com movimento direcional controlado. 

 

Pele artificial com nanomolas como nervos


Uma nova pele sintética, altamente elástica está sendo desenvolvida em Stanford e tem algumas características de sensibilidade à pressão impressionantes. Ela também pode sofrer deformação e contorsão sem qualquer dano ao material.

Ela é feita a partir de nanotubos de carbono, os quais atuam como molas e podem medir a força aplicada a eles.

"Este sensor pode registrar pressão em uma faixa que vai da pressão exercida pelo polegar e indicador de uma mão até algo em torno de duas vezes a pressão exercida por um elefante apoiado em um único pé", de acordo com Darren Lipomi, um pós-doutorando de Stanford que escreveu um artigo descrevendo o novo sensor. E ela não se deforma apreciavelmente!

Lipomi e seus colegas do Laboratório de Peles Zhenan Bao usaram nanotubos suspensos em líquido, espalharam-nos na forma de spray sobre uma superfície de silicone e depois esticaram o silicone. Os nanotubos se auto-alinharam na direção do alongamento, de acordo com o divulgado pela agência Stanford News.

 

Um segundo "esticamento", perpendicular ao primeiro, faz com que os nanotubos possam ser comprimidos e esticados em qualquer direção. Após o esticamento inicial, os tubos se enroscam como se fossem molas, e podem ser esticados repetidamente sem perder sua condutividade, explica Bao no vídeo. 

 

Os sensores são feitos de duas peças de silicona que receberam uma cobertura de nanotubos, ensanduichando uma terceira camada de silicona deformável que estoca uma determinada quantidade de carga elétrica. Quando a pressão é aplicada, a capacitância do dispositivo aumenta, e isso pode ser usado para calcular a quantidade de pressão aplicada.

Se esse dispositivo não é tão sensível quanto a outra pele super-sensível desenvolvida no mesmo laboratório no ano passado, isso é porque os pesquisadores estavam focados em fazer com que esse novo protótipo fosse transparente.

O objetivo é usar sensores como esse para construir uma pele artificial sensível sub-reptícia, diz Lipomi. (eles querem uma pele que seja invisível a um observador externo)

"O sonho mais alto desse tipo de pesquisa é restaurar a funcionalidade de peles injuriadas por acidentes, tais como as de soldados ou de vítimas de queimaduras", ele diz. A pesquisa está publicada no Jornal Nature Nanotechnology.

O artigo encontra-se acessível através desse link

Via PopSci.

Como funciona o sangue

Apenas a título de complementação do post anterior, um recorte do texto do How Stuff Works sobre o funcionamento do sangue.

O texto original encontra-se aqui.

Células brancas

As células brancas, ou leucócitos, fazem parte do sistema imunitário(sistema imunológico) e ajudam nosso corpo a lutar contra infecções. Elas circulam no sangue e o usam como meio de transporte até uma área infeccionada. No corpo de um adulto normal há de 4 a 10 mil (em média, 7 mil) células brancas por microlitro de sangue, e quando esse número aumenta, é sinal de que há uma infecção em algum lugar do seu corpo.

Existem cinco tipos principais de leucócitos:

  • neutrófilos
  • eosinófilos
  • basófilos
  • linfócitos
  • monócitos
Os neutrófilos, eosinófilos e basófilos também são chamados degranulócitos por possuírem grânulos com enzimas digestivas. Os grânulos dos basófilos são roxos, os dos eosinófilos são laranjas e vermelhos, e os dos neutrófilos têm uma coloração rosa-azulada fraca.

 

Os neutrófilos são uma das principais defesas do corpo contra as bactérias, que eles matam pela ingestão (esse processo se chama fagocitose). Os neutrófilos podem fagocitar de cinco a 20 bactérias durante suas vidas. Seu núcleo é polimorfonuclear (possui vários lóbulos e é segmentado) e, por isso, são chamados de PMNs. Além dos neutrófilos completos, também há neutrófilos imaturos vistos no sangue. Quando uma infecção causada por bactérias acontece, os exames detectam um aumento dos neutrófilos maduros e imaturos.

Os eosinófilos, por sua vez, matam parasitas e desempenham um papel nas reações alérgicas.

Já os basófilos ainda não são muito compreendidos, mas sabemos que trabalham nas reações alérgicas liberando histamina, que faz os vasos sangüíneos vazarem e atrai os leucócitos, e heparina, que impede o coágulo da área infectada para o leucócito poder chegar até a bactéria.

Os monócitos entram no tecido, onde ficam maiores, transformam-se em macrófagos e são capazes de fagocitar bactérias, até 100 durante toda sua vida, existentes em todo o corpo. Além disso, também são eles que fazem o trabalho de destruir as células mortas, danificadas ou velhas do nosso corpo. Podemos encontrar um macrófago no fígado, baço, pulmões, nódulos linfáticos, pele e intestino. Esse sistema de macrófagos que existe espalhado pelo corpo se chama sistema reticuloendotelial.

Os neutrófilos e os monócitos usam vários mecanismos diferentes para se aproximar e matar os organismos invasores. Eles possuem a interessante capacidade de se espremer pelas aberturas dos vasos sangüíneos em um processo chamado de diapedese. Além disso, movem-se pelo corpo usando movimentos semelhantes aos de amebas e são atraídos por certos compostos químicos produzidos pelo sistema imunológico ou pela própria bactéria, o que faz com que migrem para as áreas onde há uma maior concentração desses compostos químicos. O nome do processo de ser atraído ou repelido por compostos químicos se chama quimiotaxia. E o processo que eles usam para matar as bactérias, como já dissemos, é afagocitose, no qual eles cercam toda a bactéria e a digerem usando enzimas digestivas.

Já os linfócitos são células complexas que controlam o sistema imunológico do corpo. Os linfócitos T (células T) são responsáveis pela imunidade mediada por células. Os linfócitos B, por sua vez, são responsáveis pela imunidade humoral (produção de anticorpos). E quanto à proporção, as células T compõem 75% dos linfócitos. Algo que diferencia os linfócitos dos outros glóbulos brancos é a sua capacidade de reconhecer e criar uma memória das bactérias e vírus que invadem nossos corpos.

Há muitos tipos de células T com funções específicas, entre elas:

  • células T auxiliares - possuem uma proteína em suas membranas chamada de CD4 e controlam o resto do sistema imunológico ao liberar as citocinas. As citocinas estimulam as células B para que formem plasmócitos, que, por sua vez, formam anticorpos, estimulam a produção de células T citotóxicas e células T supressoras, além de ativar os macrófagos. Imagine o que aconteceria se algum invasor atacasse essas células T auxiliares, que são as responsáveis por controlar o sistema imunológico, pois são exatamente essas células que o vírus da AIDS ataca;
  • células T citotóxicas - liberam compostos químicos que se partem e matam os organismos invasores;
  • células T de memória - permanecem ativas para ajudar o sistema imunológico a reagir mais rapidamente caso o mesmo organismo seja encontrado de novo;
  • células T supressoras - as células T supressoras têm a incumbência de suprimir a resposta imunológica para que ela não fique fora de controle e destrua células normais quando não for mais necessária.
As células B se transformam em plasmócitos quando expostas a um organismo invasor ou quando ativadas pelas células T auxiliares e, além disso, produzem grandes quantidades de anticorpos (também chamados de imunoglobulinas ou gamaglobulinas). Há cinco tipos de imunoglobulinas (abreviadas como Ig): IgG, IgM, IgE, IgA e IgD. Elas são moléculas em forma de Y com um segmento variável que funciona como sítio de ligação para apenas um tipo específico de antígeno. O antígeno faz com que elas se agrupem, sejam neutralizadas ou se abram. E, além disso, elas ativam osistema do complemento.

O sistema do complemento é uma série de enzimas que complementam ou auxiliam os anticorpos e outros componentes do sistema imunológico a destruir os antígenos invasores. Ele faz isso atraindo e ativando neutrófilos e macrófagos e, assim, neutraliza os vírus e faz com que os organismos invasores se partam. As células B de memória também permanecem ativas ainda por muito tempo, o que significa que se o mesmo antígeno for encontrado, fabricará uma resposta mais rápida na produção de anticorpos.

Esta é a porcentagem média de cada tipo de leucócito no sangue:

  • neutrófilos - 58%
  • neutrófilos imaturos - 3%
  • eosinófilos - 2%
  • basófilos - 1%
  • monócitos - 4%
  • linfócitos - 33%

 

A maior parte dos glóbulos brancos (neutrófilos, eosinófilos, basófilos e monócitos) são criados na medula óssea. Os linfócitos T iniciam seu desenvolvimento na medula óssea a partir de células tronco hematopoiéticas pluripotentes e depois migram para o timo, onde amadurecem. O timo é uma glândula localizada no peito, entre o coração e o esterno, o osso central do seu peito. Já os linfócitos B maturam na medula óssea.

Quando um granulócito (neutrófilos, eosinófilos e basófilos) é liberado no sangue, ele permanece por lá, aproximadamente, de quatro a oito horas antes de ir para os tecidos do corpo, onde dura de quatro a cinco dias, em média, mas esse tempo pode ser muito menor durante infecções graves.

Os monócitos ficam no sangue por uma média de 10 a 20 horas e depois vão para os tecidos, onde se tornam macrófagos e podem durar meses ou anos.

Já os linfócitos ficam viajando pelo tecido linfático, corrente linfática e sangue. Neste último  ficam por várias horas. Os linfócitos podem viver semanas, meses ou anos.

 

As plaquetas (trombócitos), ao formar algo chamado de rolha hemostática, auxiliam na coagulação do sangue. Mas existe mais uma maneira do sangue formar coágulos: os fatores de coagulação. As plaquetas também ajudam a promover outros mecanismos de coagulação no sangue e são encontradas em uma concentração de 150 mil a 400 mil plaquetas em cada microlitro de sangue (a média é de 250 mil).

 

As plaquetas são fragmentos de células muito grandes da medula óssea chamadas megacariócitos. Elas não possuem um núcleo e não se reproduzem, sendo os megacariócitos os responsáveis por produzir mais plaquetas sempre que for necessário. A vida de uma plaqueta costuma ser de 10 dias, em média.

Elas contêm vários compostos químicos que auxiliam na coagulação, entre eles:

  • actina e miosina, para ajudá-las a contrair
  • compostos químicos que ajudam a iniciar o processo de coagulação
  • compostos químicos que atraem outras plaquetas
  • compostos químicos que estimulam a reparação dos vasos sangüíneos
  • compostos químicos capazes de estabilizar um coágulo sangüíneo
Lá no site original tem mais.

Novo fulereno (C68) é produzido em laboratório

Cientistas conseguiram sintetizar e isolar uma nova forma de fulereno em laboratório. Os fulerenos são estruturas compostas apenas por átomos de carbono em forma de esfera ou bola.

Normalmente, o fulereno mais comum é o C60, composto por 60 átomos de carbono no qual formas hexagonais e pentagonais se sucedem (cada pentágono é rodeado por 5 hexágonos e cada hexágono é rodeado por pentágonos de carbono), mais ou menos isso).

Até então, diversas variações do C60 seguiam esse mesmo padrão. Até agora.

Os cientistas chineses conseguiram capturar uma nova forma de fulereno que envolve uma estrutura em anel heptagonal (com 7 átomos de carbono). Essa pequena diferença estrutural causa inpumeras mudanças nas propriedades físicas e químicas desses materiais. (Ver imagem abaixo)

A descoberta abre novos campos de pesquisa na já fascinante química dos nanocompostos.

ARTIGO ORIGINAL via Canal Fala Química