Retrospecto 2010

E lá se vai quase um ano que esse esse blog foi criado.

A proposta dele era um pouco diferente no início, eu queria ensinar química usando recursos digitais no meu tempo livre.

Com o passar dos meses, vi que meu tempo livre não era tão grande quanto eu pensava. 

O fato de eu ter me tornado pai tirou ainda mais um pouco desse tempo "livre" que eu pensava ter. No entanto, continuo com o mesmo entusiasmo do início com relação à forma de blogar proporcionada pela plataforma posterous. (Gente, vocês não têm ideia do que é blogar diretamente do e-mail. Eu realmente recomendo o posterous a todos que têm interesse em manter um blog.)

Criei seções aqui para falar de experimentos de química, de físico-química, de educação digital e de tecnologias de informação e comunicação.

Indiquei dezenas de sites e de softwares aos leitores do blog, aprendi diversas coisas novas ao garimpar material para o blog. 

Recebi dezenas de sugestões de posts, pedidos de resolução de problemas de química (esses eu deixei de lado porque eu não estou aqui para resolver provas e listas de exercícios que os preguiçosos deixaram de fazer em tempo hábil).

Recebi elogios, recebi algumas críticas, mas o que é mais importante, eu consegui passar alguma mensagem aos visitantes.

Se não conquistei mais leitores, foi culpa minha. E se eu conquistei leitores, também foi culpa minha. :) Agradeço a todos da mesma maneira.

Ano passado, escrevi um post que foi o maior sucesso, e até hoje ele é lido e acessado.

Nesse post, eu ensinei o pessoal a gelar a cervejinha do Natal e do Ano Novo.
Se você tiver interesse, acesse o link a seguir: CLICA AQUI, VAI!

Depois, escrevi sobre a molécula do d-limoneno. Esse post também é um dos mais procurados aqui no blog. Acho que é por causa do comercial de TV de um famoso inseticida que usa esse princípio ativo para espantar os mosquitos. CLICA AQUI!

Um outro post que me deu muito prazer em escrever foi o da lanolina, também da categoria "molécula do dia".

Outra coisa legal é que eu aprendi a usar tão bem o posterous.com que eu resolvi experimentá-lo em minhas aulas. 
O resultado dessa experiência está no blog co-irmão http://educacaodigital.posterous.com. Vale a visita! :)

Apresentei um trabalho no 30o EDEQ que aconteceu na PUCRS, em Porto Alegre, justamente sobre essa experiência de usar blogs para ensinar química. (Vou colocar um link para a página dos trabalhos no final desse post.) 

A experiência foi tão gratificante que eu pretendo repetir no semestre que vem na mesma disciplina.

Eu poderia ficar citando outros posts que me deram alegrias, mas a coisa ia ficar cansativa demais.

Para comemorar esse ano de 2010 eu quero deixar para vocês dois vídeos. Eles mostram uma máquina sensacional que ajuda a servir a cerveja sem derramar e com a quantidade certa de colarinho. O princípio de funcionamento é explicado no segundo vídeo, e é bem legal. O copo usado tem um ímã na parte inferior do copo, quando ele é encaixado na máquina, esse ímã cede e deixa o líquido entrar. Quando o copo é retirado da máquina, o ímã fecha o fundo do copo e nenhum líquido vaza. 

Espero que continuem a visitar esse humilde site, eu prometo que estarei aqui no ano de 2011 e nos vindouros também. Prometo que o blog vai ser diferente a cada ano, mas sempre para melhor.

Ao ano que fica, um adeus. Ao ano que entra, um seja bem-vindo. E aos leitores do meu blog, meu desejo de que tentem sempre ser pessoas melhores, transmutem-se, mudem, alterem-se, façam como as substâncias químicas que estão constantemente buscando o equilíbrio. E lembrem-se que equilíbrio químico não é ficar paradinho que nem água de poço, mas estar mudando constantemente dando a impressão de que tudo está no mesmo lugar.

De onde vem a cor das bolhas de sabão?

Em um post anterior, eu expliquei como funcionam as bolhas de sabão.

Voltando ao assunto, hoje eu vou explicar o porquê daquelas cores tão bonitas que elas costumam exibir.

Sigam lendo o post.

Cor, um dos aspectos mais belos das bolhas, também fornece uma ferramenta extremamente interessante para a medição da espessura do filme de bolhas.

Ondas luminosas, assim como ondas do mar, possuem picos e vales (cristas e depressões). A luz vermelha tem o maior comprimento de onda e o violeta o menor.

Todas as ondas, incluindo a luz, têm uma propriedade curiosa: se duas ondas se combinam, as ondas podem se encontrar crista com vale, cancelando-se mutuamente; 

Quando elas se encontram crista com vale, para cada vibração "para cima" em uma onda, existe uma vibração "para baixo" correspondente na outra onda. Essa combinação de quantidades iguais de "para cima" e "para baixo" causa um completo cancelamento ou interferência. 

A interferência é responsável pelo brilho perolado e lustroso de uma casca de abalone, as belas cores em algumas penas de aves e asas de insetos, e manchas flutuantes de cor em uma camada de óleo sobre uma poça de água parada. Isso é verdadeiro também para as bolhas de sabão.

 

Concha de abalone (haliote)


Asa de um inseto

 

Água contendo uma fina camada de óleo sobre si

Tem mais explicação na sequência....

 #more

A luz branca é formada por todas as cores, todos os comprimentos de onda. Se uma dessas cores é subtraída da luz branca (por interferÊncia, por exemplo) nós vemos a cor complementar. Por exemplo, se a luz azul é subtraída da luz branca, nós enxergamos amarelo. A pele de uma bolha reluz com cores complementares produzidas pela interferência. Se nós tivéssemos que olhar para uma porção ampliada de uma membrana de bolha de sabão, notaríamos que a luz reflete tanto pelo exterior quanto pelo interior da bolha, mas os raios de luz que são emergem do interior da bolha viajam uma distância maior que o raio que são refletidos da parte externa da membrana. Esses raios se recombinam de forma que estão fora de fase (suas cristas e vales não estão em sincronia) e produzem interferências (tanto do tipo construtiva quando do tipo destrutiva). Dada uma certa espessura da membrana da bolha, um certo comprimento de onda será cancelado e sua cor complementar será visualizada. Comprimentos de onda maiores (vermelho) necessitam de uma parede de bolha mais espessa do que os de comprimento de onda mais curtos (violeta). Quando o vermelho é cancelado, ele deixa um reflexo azul-esverdeado.   

400 nm Violeta absorvido, Verde-amarelado observado(λ 560 nm)
450 nm Azul absorvido, Amarelo observado (λ 600 nm)
490 nm Azul-esverdeado absorvido, Vermelho observado (λ 620 nm)
570 nm Amarelo-esverdeado absorvido, Violeta observado (λ 410 nm)
580 nm Amarelo absorvido, Azul-escuro observado (λ 430 nm)
600 nm Laranja absorvido, Azul observado (λ 450 nm)
650 nm Vermelho absorvido, Verde observado (λ 520 nm)

A "pele" de uma bolha reluz com as cores complementares produzidas pela interferência. Se nós olhássemos para uma porção extremamente ampliada da membrana de uma bolha de sabão, nós poderíamos notar que a luz é refletida tanto da parte externa quanto da parte interna dessa membrana, mas o raio de luz que é refletido a partir da superfície interna viaja uma distância maior que o raio refletido a partir da superfície externa da membrana.

Quando os dois raios se recombinam eles podem ficar "fora de fase" um com o outro e produzir uma nova interferência. Dada uma certa espessura de membrana, um determinado comprimento de onda será cancelado e sua cor complementar será vista por nossos olhos.

Comprimentos de onda longos (vermelho) necessitam de uma bolha com paredes espessas para que esse "fora de fase" aconteça. Já para que comprimentos de onda curtos (violeta) possam sofrer esse fenômeno, é necessário uma espessura menor de membrana.

Quando o vermelho é cancelado, ele deixa um reflexo azul-esverdeado. À medida que a bolha afina, o amarelo é cancelado, deixando a cor azul surgir; então o verde é cancelado, surgindo a cor magenta; e finalmente o azul é cancelado, deixando o amarelo aparecer.

Eventualmente a bolha torna-se tão fina que o cancelamento ocorre para todos os comprimentos de onda e a bolha parece ter uma cor negra contra um fundo negro. 

Este surpreendente cancelamento completo é devido à forma diferente com que a luz reflete-se das duas superfícies. Quando a luz é refletida a partir da superfície externa da bolha (uma interface ar-água) a direção de vibração da onda é revertida - todas as vibrações "para cima" são tornadas "para baixo" e vice-versa. 

(Algo similar acontece quando você vibra uma corda afixada em uma parede; o pulso refletido de cabeça para baixo após bater na parede.)

Quando a luz é refletida vindo da superfície interna da bolha (interface água-ar) a direção da vibração não é alterada. Se a membrana da bolha for muito fina, muito menor que o comprimento de onda da luz visível, então os dois raios de luz refletidos sempre se encontrarão crista-com-vale e uma interferência destrutiva é produzida.

Não acontecerá uma reflexão visível, e a bolha parecerá negra. Quando você vir isso acontecendo na superfície de uma bolha de sabão você saberá que a bolha tem uma espessura de apenas pouco mais de UM MILIONÉSIMO DE UMA POLEGADA e irá estourar em breve. 

A luz branca é separada em cores básicas quando refletida a partir de duas superfícies de um filme fino. Quando as duas reflexões interferem construtivamente, elas produzem uma banda de cor. Quando elas intereferem destrutivamente, elas se cancelam mutuamente e aquela cor é subtraída do espectro.

As bandas alternantes de luz e escuridão sobre o filme de sabão são na verdade bandas de cor, produzidas por reflexão e interferência das ondas de luz. As cores dependem da espessura do filme. O filme exibido aqui ao lado está mais fino no topo, tornando-se mais espesso no fundo. Quando a espessura do filme muda, as cores também mudam, formando bandas regulares.

FONTE

O mestre Asimov fala sobre a internet......em 1998

E esse tinha cacife para falar, pois foi um grande visionário. 

Em 1960 ele já falava de grandes computadores assemelhados a cérebros que resolveriam todos os problemas matemáticos da humanidade.

Além disso, ele criou uma ciência fictícia chamada "psico-história", a qual era capaz de prever o comportamento de grandes civilizações, a psico-história.

Essa ciência podia prever o apogeu e queda de uma civilização, sem contar que permitia calcular o que poderia ser feito para minimizar o tempo de barbárie pela qual essa civilização passaria antes de retornar ao estado original.

No vídeo acima, se vocês perceberam, ele já falava de comportamentos que hoje são corriqueiros nos usuários de internet. Pesquisar pela mais ínfima e irrelevante informação era coisa impensável na década de 80.

Hoje, temos orkuts e facebooks da vida.

Pensar que as pessoas acessariam bibliotecas virtuais através do computador é algo recorrente nas obras de Asimov, então não é de espantar que ele tenha previsto isso para a emergente internet de 1988.

Aprender ao seu próprio ritmo, com o auxílio de computadores? Rá, ele já previa a existência de Ensino à Distância naquela época. E não estou falando de EaD usando cartas, mas de EaD usando ambientes computacionais.

Não precisa nem dizer que eu sou fã dele, o cara era um gênio.

Para quem não o conhece, que tal procurar pelos sebos as obras da heptologia "Fundação" ou então algo sobre "Robôs"?

Eu garanto que não vão se decepcionar. 

10 fatos curiosos sobre cientistas

Esse post vai ser o legítimo copy-paste, mas é que o final de semestre tá pegando...

1 – O primeiro trabalho científico de Albert Einstein, publicado na revista científica Annalen der Physik (a mesma onde ele publicaria a famosa Teoria da Relatividade cinco anos depois) era sobre a física dos líquidos em canudos de beber.

2 – Depois de sacudir o mundo com a sua Teoria da Evolução, Darwin passou o resto dos seus dias estudando minhocas, chegando a tocar piano para elas afim de estudar o efeito das vibrações. Seu livro sobre formação de humo e minhocas, publicado 10 anos depois do famoso A origem das espéciesvendeu mais do que este.

3 – O brilhante físico estadunidense Richard Feynman era um excelente tocador de bongô. Além disso, era especialista em arrombar cofres, inclusive tendo sido chamado para arrombar do Consulado dos EUA em uma temporada que passou no Brasil.

4 – Ninguém sabe onde está o corpo do astrônomo Edwin Hubble. Depois de sua morte em 1953, sua esposa se recusou a fazer um funeral e a dar satisfações do que havia feito com o corpo do esposo famoso. Alguns mais fanáticos acham simplesmente que Hubble “voltou para casa”.

5 – O famoso Louis Pasteur ficou tão paranóico com os micróbios que examinava com uma lente de aumento todos os pratos que lhe eram servidos.

6 – O químico sueco Karl Scheele, descobridor do processo de fabricação do fósforo, além de ter descoberto o bário, o manganês e o tugstênio, tinha a curiosa mania de provar todos os elementos químicos com que trabalhava. Foi encontrado morto, envenenado por sabe-se lá o que, aos 43 anos.

7 – Dmitri Mendelev, o pai da tabela periódica, tinha dezessete irmãos. Ou quatorze, dependendo da fonte que você consulte. De qualquer forma, todas as fontes concordam que ele tinha um monte de irmãos.

8 – Em 1893 inauguraram uma estátua de Lavosier na França, afim de celebrar os 100 anos da sua morte na guilhotina. Mas, descobriram depois, a estátua tinha a cabeça do marquês de Condorcet. Por sorte a estátua foi roubada na época da segunda guerra mundial.

9 – Antes de influenciar a revolução sexual com o polêmico Relatório Kinsey, o cientista Alfred C. Kinsey era um tenaz entomologista. Em uma expedição que durou dois anos, ele percorreu 4 mil quilômetros e coletou 300 mil vespas. Não se sabe quantas ferroadas ele tomou.

10 – O naturalista Lazzaro Spallanzani, o primeiro a conseguir uma fecundação artificial em laboratório, em 1740, recolheu o esperma de sapos vestindo cuecas de couro, cortadas por ele mesmo, antes da cópula dos batráquios, para realizar as suas experiências.

Achei aqui.